TOPOLOGY 2 FINAL EXAMINATION

This exam is of **50 marks**. Please **read all the questions carefully** and **do not cheat**. Please feel free to use whatever theorems you have learned in class after stating them clearly. Please **hand in your phones** at the beginning of the class. Please sign the following statement:

I have not used any unfair or illegal means to answer any of the questions in this exam. I have answered this paper honestly and truthfully.

Name:

Signature:

1. Let X be the graph known as the Moser Spindle:

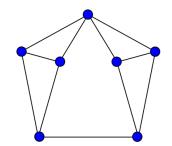


FIGURE 1. Moser Spindle

- a. Compute the fundamental group $\pi_1(X, P)$ for some vertex P on X. (5)
- b. Compute the homology groups $H_i(X, \mathbb{Z})$ for all *i*. (10)
- c. Compute the **Betti numbers** and the **Euler characteristic** $\chi(X)$. (3,2)

(1)

d. Extra Credit - Why has this been in the news lately?

2. Prove the **Five Lemma**: If A_i , B_i $1 \le i \le 5$ are R modules with homomorphisms $f_i : A_i \to A_{i+1}$ and $g_i : B_i \to B_{i+1}$ and homomorphisms $\alpha, \beta, \gamma, \delta$ and ϵ from $A_i \to B_i$ such that in the diagram the **rows are exact**, α is **surjective**, ϵ is **injective** and β and δ are **isomorphisms**, then γ is an **isomorphism**.

3a. State the Excision Theorem

(3)

(7)

3b. Use it to prove that

$$H_q(S^n, \mathbb{Z}) \simeq H_{q-1}(S^{n-1}, \mathbb{Z})$$

for $q \ge 2, n \ge 1$.

4. Let $T = \mathbb{C}/\mathbb{Z}^2$ be the torus

4a. Compute the fundamental group $\pi_1(T, \bar{i})$, where $i = \sqrt{-1}$ and \bar{i} denotes its image under the canonical map. (4)

4b. Compute the homology groups $H_i(T, \mathbb{Z})$ for all *i*. (6)